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Abstract

Large language models (LLMs) exhibit
impressive emergent reasoning abilities,
yet remain fundamentally constrained by
their parametric memory and finite context
windows. As a result, they hallucinate,
struggle with up-to-date knowledge, and
often misinterpret retrieved evidence. A
recent line of work addresses these limitations
by tightly coupling step-by-step reasoning
with dynamic search, treating retrieval as an
action within an agentic loop. This survey
synthesises over forty systems that interleave
planning, querying, retrieving, verifying, and
stopping, rather than performing a single
static retrieval. We organise the literature
along training paradigms (prompt-based,
supervised, reinforcement learning) and archi-
tectural choices (single-controller, modular,
hierarchical, and tree-search). We further
review benchmarks, metrics, and evaluation
protocols, compare empirical performance,
and highlight open challenges in reward
design, long-horizon memory, efficiency, and
safety. Our taxonomy and analysis aim to
clarify the landscape of reasoning–search–
augmented LLMs and outline promising
directions for future work.Resources are
maintained at https://github.com/notij/
Awesome-Reasoning-Search-Augmented-LLMs

1 Introduction

Large language models (LLMs) have demonstrated
remarkable emergent reasoning capabilities across
mathematics, programming, and open-domain
question answering. However, they are inherently
limited by (i) static parametric knowledge, bounded
by a training cut-off, and (ii) finite context windows.
Their parameters are fixed at training time and their
context windows are limited, which lead them to
hallucinate or omit critical facts, when faced with
complex, long-horizon, or recent questions queries.
Chain-of-thought (CoT) prompting improves rea-
soning by instructing LLMs to produce intermedi-

ate steps, and self-consistency techniques sample
multiple CoTs to select the most common answer
(Besta et al., 2025).

Methods such as ReAct and Self-Ask interleave
natural-language reasoning with calls to search
APIs, using hand-crafted prompts and determin-
istic heuristics to decide when to search and what
to retrieve (Yao et al., 2022). While effective in
some settings, these approaches do not allow the
model to learn when to search, what to retrieve, or
how to integrate evidence. These methods depend
on hand-crafted prompts fixed heuristics.

Parallel efforts in retrieval-augmented gener-
ation (RAG) constrain generation to retrieved
documents, reducing hallucination relative to un-
grounded LLMs, but RAG still suffers from re-
trieval irrelevance, residual hallucinations, and la-
tency bottlenecks (Barnett et al., 2024). These
limitations have sparked interest in agents that
treat search as a trainable component of the rea-
soning process. The pioneering Search-R1 frame-
work uses reinforcement learning (RL) teach an
LLM to to autonomously generate multiple search
queries during step-by-step reasoning and decide
when to stop; it yields up to 41% higher exact
match scores than static RAG baselines on open-
domain and multi-hop QA benchmarks (Jin et al.,
2025). Its successors refine this idea in several
directions. ZeroSearch removes reliance on ex-
ternal APIs during training by simulating search
with a smaller LLM, yet still finds that a learned
retrieval module can match or surpass real-search
performance (Sun et al., 2025). ReSearch trains
solely via outcome-based RL, allowing the model
to discover its own querying strategy (Chen et al.,
2025), while StepSearch optimises a step-wise PPO
objective with information-gain and redundancy-
penalty rewards to improve multi-hop QA (Zheng
et al., 2025a). Stratified GRPO addresses trajec-
tory heterogeneity by stratifying advantages (Zhu
et al., 2025). Later works like VerlTool modu-
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larize the loop into planning, retrieving, verify-
ing, and answering (Jiang et al., 2025a) or inte-
grate hierarchical planning and tree search as in
THOUGHTSCULPT (Chi et al., 2025)

1.1 Scope and Significance
These developments motivate our survey of
reasoning-search-augmented LLMs—models that
dynamically interleave reasoning (planning, de-
composition, self-reflection) with active search. We
formally define such systems as those implement-
ing a loop of plan → query → retrieve → verify →
stop:

• Plan: Generate or revise a task decomposition
or search query based on current context.

• Query: Issue one or multiple search calls
(one-shot, step-wise or batched) to an external
environment (e.g., web, simulation, knowl-
edge base).

• Retrieve: Fetch documents, snippets or struc-
tured data from the search environment;
retrieval can be dense, sparse, hybrid or
Monte-Carlo-tree–guided.

• Verify: Assess whether retrieved evidence sup-
ports the hypothesis; methods range from sim-
ple self-consistency checks, to learned veri-
fiers, reward models or factuality scorers.

• Stop: Decide when to terminate the loop; stop-
ping rules may be fixed (e.g., maximum turns),
threshold-based, or learned from rewards.

By reasoning-search-augmented, we mean that
the model’s decision to search (or not) is condi-
tional on the reasoning state, distinguishing these
agents from vanilla RAG systems that perform a
single retrieval before generation. Our focus is lim-
ited to text-based search agents that query web or
local knowledge bases; we exclude code execution,
multimodal tools, or purely structured search un-
less it is coupled with reasoning. Geographically,
we cover work published between 2022 and 2025
in venues such as ACL, NeurIPS, ICML, AAAI
and arXiv, spanning more than 40 distinct systems.
Our survey is thus the first to:

• Provide background on reasoning topologies
(CoT, ToT) and early tool-use frameworks
(ReAct, Self-Ask), explaining their strengths
and limitations.

• Define reasoning-search-augmented LLMs
and formalise the plan → query → retrieve
→ verify → stop loop.

• Organise the literature into a two-axis taxon-
omy (training/architecture and loop design),
which serves as the backbone of the survey.

We also discuss the open challenges in compute
efficiency, reward design, long-horizon memory,
structured retrieval, and safety.

2 Taxonomy of
Reasoning–Search–Augmented LLMs

We organise the literature along two axes:

1. Training / architectural paradigm: RL-
based vs. supervised vs. prompt-based; single-
controller vs. modular vs. tree-search.

2. Design of the plan → query → retrieve →
verify → stop loop: how queries are gener-
ated, what search environment is used (open
web vs. local knowledge base), and whether
verification or feedback modules are present.

Although we present distinct categories, their
boundaries are fluid. For example, an agent that
uses a search tool can be viewed simultaneously as
a retrieval method, a reasoning method, and a tool-
use method. Where appropriate, we highlight such
hybrid architectures or cross-reference systems that
serve multiple functional roles.

Table ?? (not shown due to space) summarises
representative systems, indicating: (i) presence of a
controller or planner module, (ii) search-query gen-
eration strategy (chain-of-thought tagging, learned
policy, or rule-based), (iii) search environment
(web vs. local corpora vs. knowledge graphs), (iv)
verification / feedback mechanisms, and (v) train-
ing paradigm (prompt-only, supervised fine-tuning,
RL).

2.1 Reinforcement Learning for
Search-Augmented Reasoning

Single-controller RL agents. These methods
train a single LLM policy that interleaves natural-
language reasoning and search actions.

Jin et al. (2025) introduce Search-R1, which aug-
ments an LLM with search actions and token mask-
ing and trains it via RL. The model learns to decide
when to issue search queries and how to incorporate



Figure 1: Taxonomy of Reasoning–Search–Augmented LLMs

retrieved snippets into its chain-of-thought, yield-
ing large improvements over static RAG baselines.
ZeroSearch avoids costly and noisy external APIs
during training by simulating search with a smaller
LLM, while still demonstrating that a trained re-
trieval module can match or exceed real-search
performance at test time (Sun et al., 2025). Re-
Search shows that RL alone—without supervised
reasoning traces—is sufficient to learn when and
how to search (Chen et al., 2025).

StepSearch optimises step-wise PPO with
information-gain and redundancy penalties, encour-
aging the agent to issue informative, non-redundant
queries and achieving sizeable gains on multi-hop
QA (Zheng et al., 2025a). Stratified GRPO han-
dles structural heterogeneity by computing strati-

fied advantages across trajectories, improving sta-
bility and performance (Zhu et al., 2025). AI-
SearchPlanner decouples planning and answer gen-
eration by training a small RL planner to choose
search actions while keeping the QA model frozen
(Mei et al., 2025b). O2-Searcher trains an RL agent
in a local simulated search environment for both
open-ended and closed-ended questions, using uni-
fied rewards to outperform larger baselines with a
3B model (Mei et al., 2025a).

R-Search employs multi-reward RL, jointly opti-
mising answer quality, evidence quality, and output
format, and reports up to 32.2% improvement over
strong baselines (Zhao et al., 2025). R3-RAG in-
troduces a two-stage pipeline: a cold-start stage for
supervised reasoning and retrieval, followed by RL



fine-tuning using answer and relevance rewards (Li
et al., 2025c). Thinker combines hierarchical prob-
lem decomposition with a knowledge-boundary
detector; RL tuning improves exact match (EM)
compared to purely prompt-based reasoning (Xu
et al., 2025). MemSearcher compresses the reason-
ing history into a compact memory and trains via
multi-context GRPO, yielding double-digit relative
gains (Yuan et al., 2025).

Further, R1-Searcher and ParallelSearch factor
the agent into sub-components or batch multiple
queries to trade off latency and accuracy (Song
et al., 2025a). KunLunBaizeRAG combines re-
inforcement alignment, iterative search–think en-
hancement, and local routing to yield strong gains
on knowledge-intensive tasks (Li et al., 2025a).
RAG-R1 incentivises LLMs to transition from
single-query to multi-query retrieval, reducing la-
tency by 11.1% and improving accuracy by up to
13.7% (Tan et al., 2025). ReSum periodically sum-
marises context during RL training, enabling long-
horizon search with improved performance over
ReAct-like baselines (Wu et al., 2025). SEM post-
trains LLMs to decide when to search via GRPO,
reducing redundant calls while maintaining accu-
racy (Sha et al., 2025).

The s3 framework decouples the searcher from
the generator and trains only the searcher with a
“Gain Beyond RAG” reward, achieving competitive
results using only a few thousand training samples
(Jiang et al., 2025b). ToolRL focuses on generic
tool use, designing reward functions for tool se-
lection and call correctness; RL training improves
tool-use accuracy by a significant margin (Qian
et al., 2025). Scent of Knowledge (InForage) uses
rewards inspired by Information Foraging Theory,
explicitly rewarding outcome quality and informa-
tion gain (Qian and Liu, 2025). Hybrid Latent
Reasoning leverages latent policy states and a gat-
ing mechanism with RL to improve performance
on knowledge- and reasoning-intensive tasks (Yue
et al., 2025).

Multi-agent and modular RL frameworks.
Several approaches decompose the reasoning–
search loop into specialised modules.

VerlTool provides a unified agent framework
with separate planner, executor, and verifier mod-
ules, trained with RL and designed for multi-tool
scenarios (Jiang et al., 2025a). MemSearcher
combines a memory compressor with a search-
and-reason agent and uses multi-context GRPO to

jointly optimise memory management and retrieval
(Yuan et al., 2025). R1-Searcher splits the system
into planner, searcher, and verifier sub-agents and
uses reward-trace distillation to improve coordina-
tion (Song et al., 2025a).

CoRAG (Chain-of-Retrieval Augmented Genera-
tion) iteratively refines queries and retrieves chains
of documents, improving EM on KILT-style bench-
marks by over ten points (Muhamed et al., 2025).
DeepResearcher scales multi-agent research sys-
tems in real web environments via RL, training
agents that iterate between search, summarisation,
and drafting (Zheng et al., 2025b). SmartRAG
jointly trains retriever and generator with RL, de-
ciding when to retrieve and how to rewrite queries
(Gao et al., 2025b). ASearcher (Beyond Ten Turns)
focuses on fully asynchronous RL for long-horizon
search, allowing more than one hundred search
calls and achieving large gains on long-horizon
benchmarks (Gao et al., 2025a).

Efficiency and long-horizon RL. A recurring
theme in RL-based systems is the tension be-
tween exploration and efficiency. ReSum uses pe-
riodic summarisation to enable indefinite explo-
ration while controlling context size (Wu et al.,
2025); SEM and s3 explicitly penalise unnecessary
searches or minimise training data (Sha et al., 2025;
Jiang et al., 2025b). MemSearcher’s compressed
memory design likewise improves efficiency in
long dialogues or research tasks (Yuan et al., 2025).
These works illustrate that the structure of mem-
ory and search—not just the reward—is critical to
scalability.

2.2 Prompt-Based and Supervised Search
Agents

Prompt-based and supervised methods eschew RL
in favour of carefully designed prompts or super-
vised fine-tuning.

Search-o1 uses a rule-based
plan–query–retrieve–revise loop that requires
no additional training, outperforming zero-shot
baselines on QA tasks while remaining simple
to implement (Li et al., 2025b). AutoRefine
(Search-and-Refine During Think) introduces
explicit knowledge-refinement steps between
search calls and adds retrieval-specific objectives,
improving multi-hop QA (Shi et al., 2025).
DualRAG fine-tunes both a reasoning-augmented
querying module and a progressive knowledge-
aggregation module, which operate iteratively to



refine evidence sets (Cheng et al., 2025).
PAR-RAG (Plan-then-Act-and-Review RAG)

decomposes questions into sub-questions, retrieves
evidence at multiple granularities, and employs
verification steps to correct reasoning errors; a top-
down planning component constrains the reasoning
path and improves robustness (Zhang et al., 2025b).
More generally, Search–Refine frameworks insert
static Search: and Refine: tags into chain-of-
thought prompts, improving interpretability but re-
maining less adaptive than RL-based policies.

2.3 Tree-Search and Hierarchical Planning
Tree-search and hierarchical planning methods ex-
plore reasoning spaces more systematically.

THOUGHTSCULPT combines Monte-Carlo
Tree Search (MCTS) with an LLM-powered
thought generator and evaluator, allowing the agent
to explore and prune candidate reasoning paths
and achieve state-of-the-art gains on several reason-
ing and generation tasks (Chi et al., 2025). RATT
constructs retrieval-augmented thought trees, inte-
grating retrieval at each branch to maintain factual
correctness and coherence (Zhang et al., 2025a).

ReKG-MCTS performs MCTS over knowledge
graphs, guided by an LLM but without RL, and out-
performs other training-free methods on structured
QA benchmarks (?). RARE extends rStar MCTS
by adding retrieval-augmented actions and a factu-
ality scorer to evaluate reasoning paths (Tran et al.,
2025). HyperTree Planning proposes hypertree-
structured planning outlines that support hierarchi-
cal divide-and-conquer reasoning and demonstrates
substantial gains on a travel-planning benchmark
(Gui et al., 2025). LPKG fine-tunes LLMs using
planning traces mined from knowledge graphs, en-
abling explicit plan generation and structured re-
trieval for complex questions (Wang et al., 2024).

2.4 Retrieval-Augmented Generation Variants
Several systems redesign the RAG pipeline to in-
tegrate reasoning and retrieval more tightly, while
remaining closer to the RAG paradigm than to fully
agentic RL.

RAG-R1 transitions from single-query to multi-
query retrieval through RL, improving both accu-
racy and latency (Tan et al., 2025). Open-RAG
converts a dense model into a sparse mixture-of-
experts with hybrid adaptive retrieval, showing that
an open-source 7B model can surpass larger closed-
source baselines on knowledge-intensive tasks (Is-
lam et al., 2024). KunLunBaizeRAG combines rea-

soning alignment, search–think iterative enhance-
ment, and network-local routing to boost EM and
LLM-judged scores (Li et al., 2025a). EviNote-
RAG inserts an intermediate note-taking stage and
uses an entailment-based evidence-quality reward
to improve F1 on multi-hop QA benchmarks (Dai
et al., 2025).

SmartRAG and ToolRL jointly learn retrieval,
reasoning, and tool use, demonstrating generalisa-
tion to unseen tools and APIs (Gao et al., 2025b;
Qian et al., 2025). ZeroSearch, ParallelSearch, and
MemSearcher sit at the boundary between clas-
sic RAG and RL agents: they leverage simula-
tion, batched retrieval, and memory compression
to improve efficiency while maintaining agentic be-
haviour (Sun et al., 2025; Yuan et al., 2025; Song
et al., 2025a).

2.5 Knowledge Graph and Structured
Retrieval

Structured retrieval settings often involve explicit
knowledge graphs, APIs, or function calls. LPKG
leverages planning traces derived from knowl-
edge graphs, training models to decompose com-
plex questions into structured sub-queries (Wang
et al., 2024). ReKG-MCTS and RARE augment
MCTS with knowledge-graph traversal and re-
trieval actions (?Tran et al., 2025). PAR-RAG in-
tegrates vector-based retrieval, knowledge graphs,
and citation-based evidence selection within a uni-
fied planning and verification framework (Zhang
et al., 2025b).

These methods highlight that reasoning–search
agents must ultimately cope with heterogeneous
sources, including structured databases, APIs, and
multimodal content.

3 Benchmarks, Datasets, and Metrics

Evaluating reassoning–search-augmented models
requires benchmarks that test both information re-
trieval and reasoning, along with metrics for answer
quality, search behavior, and tool-use. Here, we
summarize key datasets and evaluation protocols.

3.1 Open-Domain QA Datasets

Natural Questions (NQ): This is an open-domain
dataset with hundreds of thousands of anonymized
Google Queries. Models must extract precise an-
swers from full Wikipedia articles, making this
a strong retrieval and comprehension benchmark.
(Kwiatkowski et al., 2019)



TriviaQA: A collection of nearly 100k question-
answer pairs, each with multiple evidence docu-
ments and requiring retrieval from unstructured
sources.(Joshi et al., 2017)

3.2 Multi-Hop QA Datasets
HotpotQA: About 113k multi-hop questions with
sentence-level supporting facts, directly designed
to test multi-step reasoning. (Yang et al., 2018)
FEVER: Fact verification tasks with 195k human-
written claims, where systems must verify or refute
claims, citing supporting evidence (Thorne et al.,
2018).
MuSiQue: Multi-hop questions composed to
avoid exploitable shortcuts, ensuring truly multi-
step reasoning.(Trivedi et al., 2022)
2WikiMultiHopQA: A multi-hop dataset requir-
ing at least two reasoning hops per question, which
explicit reasoning chains provided. (Ho et al.,
2020)
StrategyQA: Short, seemingly simple questions
whose reasoning steps are implicit and provides
explicit decompositions for evaluation.(Geva et al.,
2021)
Bamboogle: A small multi-hop dataset that cu-
rates questions that even search engines fail to an-
swer. They are useful for testing compositional
robustness. (Press et al., 2023)

3.3 Tool-Use and Function-Calling
Benchmarks

API-Bank: A large-scale benchmark that intro-
duces dozens of APIs and annotated tool-use dia-
logues across hundreds of domains. It can measure
whether a model can plan, select, and call sequen-
tial tool execution.(Li et al., 2023)
Berekeley Function Calling Leaderboard
(BFCL): Built on API-BAnk, the Berekeley
Function Calling Leaderboard evaluates models on
thousands of real-world functions, including serial
and parallel calls, with an abstract syntax tree
(AST) metric to verify parameter correctness.(Patil
et al., 2025)

3.4 Long-Horizon and Research Benchmarks
GAIA: This benchmark contains hundreds of
multi-step questions, each requiring multiple tool
calls and long-term planning.(Mialon et al., 2024)
xBench-DeepSearch and BrowseComp: Long-
horizon research questions that require dozens of
queries and extensive summarization. (Wei et al.,
2025)

ReSum: A summarization benchmark; 30B model
trained on only 1k samples attains competitive per-
formance on long-horizon search tasks by period-
ically summarizing context (Wu et al., 2025) be
DeepResearcher/ Related Environments: These
benchmarks embed agents in real browser environ-
ments, combining retrieval, summarization, and
drafting. Human evaluators judge the final reports
for quality and novelty. (Zheng et al., 2025b; Gao
et al., 2025a).

3.5 Structured and Knowledge-Graph QA
WebQSP: Structured QA benchmark that re-
quires traversing knowledge graphs such as Free-
base, converting questions into graph-structured
queries.(Yih et al., 2016)
Complex Web Questions (CWQ): Extension of
WebQSP requiring multi-hop reasoning over Free-
base.(Talmor and Berant, 2018)
ReGK-MCTS: Applies Monte Carlo Tree Search
(MCTS) over knowledge graphs, guided by LLMs,
and outperforms training-free baselines on these
datasets (Song et al., 2025b).
LPKG: Constructs training data by extracting pat-
terns from knowledge graphs and verbalizing them
into question-plan-answer triples. It also introduces
the CLQA-Wiki benchmark to test plan generation
and execution (Wang et al., 2024).

3.6 Metrics and Evaluation Protocols
Most studies report standard QA metrics such as
exact match (EM) and token-level F1 on final an-
swers. However, these metrics ignore search be-
haviour and tool use. Consequently, researchers
augment them with:

• Supporting-fact F1, measuring overlap with
annotated evidence sentences (e.g., Hot-
potQA, FEVER).

• Average number of search steps or tool
calls, used to compare one-shot and step-wise
retrieval policies (e.g., StepSearch, SEM).

• Retrieval latency and throughput, crucial
for systems that batch or parallelise queries
(e.g., ParallelSearch, ASearcher).

• Reward curves and returns, especially in
RL work, where outcome-based and process-
based rewards (for evidence quality, informa-
tion gain, or efficiency) are tracked over train-
ing (Jin et al., 2025; Zhao et al., 2025; Qian
and Liu, 2025).



• Tool-call success rates and AST accuracy,
essential for API-Bank and BFCL style evalu-
ations.

• Pass@k or Avg@k scores for long-horizon
tasks (e.g., GAIA, xBench), which allow par-
tial credit over multiple attempts.

• Human evaluation of report quality, novelty,
or safety, particularly for research and plan-
ning tasks (Zheng et al., 2025b; Gao et al.,
2025a).

These metrics highlight that evaluating
reasoning–search agents requires assessing not
only correctness but also efficiency, evidence
quality, and tool-use reliability. We recommend
that future work report both QA metrics and
search/tool-specific measures, and clearly specify
the evaluation setting (number of search turns,
allowed tools, maximum context length).

4 Comparative Performance and Trends

Over the past three years, the field has transi-
tioned from static RAG to systems that treat search
as an explicit action within a broader reasoning
loop. Early RL agents such as Search-R1 demon-
strate that even simple outcome-based rewards can
substantially improve EM on open-domain and
multi-hop QA (Jin et al., 2025). Subsequent sys-
tems refine this recipe: StepSearch uses step-wise
information-gain rewards and reports 4–11 point
EM improvements (Zheng et al., 2025a); Strati-
fied GRPO normalises advantages within trajectory
strata to stabilise RL and adds several points of
accuracy (Zhu et al., 2025); ZeroSearch shows that
search can be efficiently simulated during train-
ing without sacrificing test-time performance (Sun
et al., 2025).

Two broad trends emerge:

From one-shot to iterative search. RL agents
increasingly move from single-shot retrieval to
iterative, multi-step search. ParallelSearch and
StepSearch batch or sequence queries, reducing
latency while improving accuracy (Zheng et al.,
2025a; Song et al., 2025a). ReSum pushes this fur-
ther by periodically summarising retrieved context,
enabling dozens of search calls in long-horizon
settings without running out of context (Wu et al.,
2025). MemSearcher and SEM likewise show that
carefully managing memory and search frequency

can yield efficient yet strong agents (Yuan et al.,
2025; Sha et al., 2025).

Modularity and hierarchy. Systems are becom-
ing more modular and hierarchical. R1-Searcher
decouples planning, search, and verification and
trains them with reward-trace distillation (Song
et al., 2025a). MemSearcher compresses history
into a dedicated memory module and still outper-
forms larger baselines (Yuan et al., 2025). Thinker
decomposes problems into sub-questions and uses
RL to decide when external search is required
(Xu et al., 2025). CoRAG adopts a collaborative
scheme in which multiple agents iteratively refine
queries and evidence sets (Muhamed et al., 2025).
These designs improve interpretability and robust-
ness, but at the cost of increased training complex-
ity and more intricate engineering.

Beyond RL, planning and tree-search meth-
ods (THOUGHTSCULPT, RATT, ReKG-MCTS,
RARE, HyperTree Planning) explore reasoning
spaces through explicit search over thoughts or
knowledge-graph paths, avoiding RL but relying
on strong search heuristics and domain-specific
templates (Chi et al., 2025; Zhang et al., 2025a; ?;
Tran et al., 2025; Gui et al., 2025). RAG variants
such as RAG-R1, Open-RAG, KunLunBaizeRAG,
and EviNote-RAG complement these agentic sys-
tems by rethinking retrieval strategies and evidence
aggregation (Tan et al., 2025; Islam et al., 2024; Li
et al., 2025a; Dai et al., 2025).

4.1 Critical Analysis

This survey reveals several key insights:

Longer is not always better. Studies on efficient
reasoning show that overly long chains-of-thought
can hurt performance; agents that adaptively de-
termine when to search and stop often outperform
those that merely increase step count. Explicit
stopping criteria or penalties for redundant search
(e.g., SEM, s3, Scent of Knowledge) exemplify this
trade-off (Sha et al., 2025; Jiang et al., 2025b; Qian
and Liu, 2025).

Balancing exploration and exploitation. RL
agents must explore diverse search paths without
wasting queries. Step-wise rewards, information-
gain objectives, and multi-reward strategies—as
in StepSearch, R-Search, R3-RAG, and Scent
of Knowledge—seek this balance (Zheng et al.,
2025a; Zhao et al., 2025; Li et al., 2025c; Qian and
Liu, 2025). Yet, designing incentives that foster



both thoroughness and efficiency remains a chal-
lenge.

Simulation vs. real-world search. Simulated
search (ZeroSearch, Scent of Knowledge) reduces
costs and avoids noisy APIs, but may not capture
the complexity and adversarial nature of real web
search (Sun et al., 2025; Qian and Liu, 2025). Hy-
brid approaches, combining simulated and real re-
trieval (e.g., KunLunBaizeRAG, DeepResearcher),
appear promising (Li et al., 2025a; Zheng et al.,
2025b).

Planning and RL as complementary. Planning
methods offer explicit decompositions and struc-
ture (THOUGHTSCULPT, HyperTree Planning),
while RL learns adaptive policies over these frame-
works. Integrating planners to propose search paths
and RL to refine when to explore, backtrack, or stop
is a natural next step (Chi et al., 2025; Gui et al.,
2025).

5 Challenges and Future Directions

We identified the following open problems and
promising future directions.

Compute and data efficiency. RL agents often
require millions of tokens and repeated search in-
teractions, leading to high training costs even with
simulated retrieval or stratified advantages (Zhu
et al., 2025; Sun et al., 2025; Wu et al., 2025; Gao
et al., 2025a). Future research should pursue more
sample-efficient RL (e.g., off-policy, model-based,
meta-learning), improved synthetic data, and trans-
ferable policies across tasks and tools.

Reward design and evaluation. Designing re-
wards that align with human intent is challenging:
optimizing for correctness can cause hallucinations
or redundant search, while efficiency may truncate
reasoning. Information-theoretic objectives and hu-
man feedback offer alternatives (Zhao et al., 2025;
Qian and Liu, 2025). Metrics should move beyond
exact match to also capture evidence quality, effi-
ciency, and tool-use robustness; tool-call and AST-
based measures, as in BFCL-style benchmarks, are
key steps.

Long-horizon reasoning and memory. Current
summarisation and memory compression methods
(e.g., ReSum, MemSearcher) are heuristic and risk
losing important details (Wu et al., 2025; Yuan
et al., 2025). Learned memories, hierarchical atten-
tion, and retrieval-based episodic recall may better

support long-term reasoning. Jointly learning mem-
ory and search policies remains an underexplored
opportunity.

Structured and multimodal retrieval. Most
work centers on unstructured text, yet practical
tasks span code, tables, images, and APIs. Early
efforts in knowledge-graph reasoning and function
calling (e.g., ReKG-MCTS, ToolRL) highlight the
need for agents to integrate diverse modalities and
tools within unified reasoning loops (?Wang et al.,
2024; Qian et al., 2025; Gao et al., 2025b).

Alignment, safety, and robustness. Agents may
retrieve biased, misleading, or harmful content.
Verification and consensus modules (e.g., R1-
Searcher, CoRAG) offer partial safeguards (Song
et al., 2025a; Muhamed et al., 2025), but fully align-
ing agent behavior with human values is unsolved.
Progress is needed in adversarial scenarios, robust
calibration, and user-in-the-loop verification.

Human–AI collaboration. Ultimately,
reasoning–search agents should support hu-
mans in complex tasks by soliciting clarifications,
exposing their reasoning, and adapting to user
feedback. Multi-agent research systems and
long-horizon planning frameworks (e.g., DeepRe-
searcher) suggest that conversational planning and
feedback are vital for usefulness and trust (Zheng
et al., 2025b; Gao et al., 2025a).

6 Conclusion

Static LLMs are limited by parametric memory
and context windows, while standard RAG ap-
proaches lack deep reasoning over retrieved con-
tent. Reasoning–search–augmented LLMs over-
come these barriers by integrating search as a core
action within an agentic planning and verification
loop.

The systems surveyed here span RL-based
agents, modular frameworks, planning and tree-
search strategies and advanced RAG variants
demonstrate that searching with reasoning yields
substantial gains on knowledge-intensive, long-
horizon tasks, while highlighting open challenges
in efficiency, reward desing, memory, structured
retrieval, and human collaboration.

We hope that this survey and taxonomy will help
guide future research and development of more re-
liable, efficient, and trustworthy reasoning-search-
augmented LLMs.
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nizing all frameworks and collecting
URLs for papers, GitHub, datasets,
and models, following the format of
https://github.com/yuzhimanhua/
Awesome-Scientific-Language-Models.

• Drafted parts of the report, contributed to
the appendix by sorting models, base models,
datasets, and keywords, and created a taxon-
omy diagram for the paper using draw.io.

• Assisted in drafting the presentation slides.

Justin Liu

• Contributed to the
Datasets/Benchmarks/Metrics section,
helping organize the content and adding
new material based on research papers
gathered. Organized the sections follow-
ing the structure of the survey paper at
https://arxiv.org/pdf/2502.17504.

• Attempted to gather data from research pa-
per experiments to build a benchmark suite
for the survey; however, the large number of
frameworks made unification infeasible.

• Helped refine and tune the slides for the final
presentation.

https://arxiv.org/pdf/2502.17504
https://arxiv.org/pdf/2502.17504
https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models
https://github.com/yuzhimanhua/Awesome-Scientific-Language-Models
https://arxiv.org/pdf/2502.17504


Model Year Base Model Dataset Keywords
Search-R1
(Jin et al., 2025) 2025 llama3, Qwen2.5 Natural Questions, HotpotQA Scalable RL Training Framework; Search En-

gine Calling Interleaved LLM
ZeroSearch
(Sun et al., 2025) 2025 llama3, Qwen2.5 Natural Questions, HotpotQA Supervised Fine-tuning

ReSearch
(Chen et al., 2025) 2025 Qwen2.5 FlashRAG (38 datasets) Tool Call for LLMs

StepSearch
(Zheng et al., 2025a) 2025 Qwen2.5 MuSiQue Step-Wise Proximal Policy Optimization

Stratified GRPO
(Zhu et al., 2025) 2025 Qwen2.5 Natural Questions, HotpotQA Structural Heterogeneity

AI-SearchPlanner
(Mei et al., 2025b) 2025

Qwen2.5, Qwen3
Deepseek-V3
Deepseek-R1

Natural Questions, HotpotQA Search Planning

O2-Searcher
(Mei et al., 2025a) 2025 Qwen2.5 Natural Questions, HotpotQA Searching-based Agent; Open-Domain QA

R-Searcher
(Zhao et al., 2025) 2025 Qwen2.5 2WikiMultiHopQA Reasoning–Search Integration

R3-RAG
(Li et al., 2025c) 2025 llama3.1, Qwen2.5 Synthesized Trajectories Learn Optimal Reasoning–Retrieval Strategies

Thinker
(Xu et al., 2025) 2025 Qwen2.5 Natural Questions

HotpotQA, WebQA Deep Thinking and Reasoning

MemSearcher
(Yuan et al., 2025) 2025 Qwen2.5 Natural Questions, HotpotQA Multi-context GRPO

R1-Searcher
(Song et al., 2025a) 2025 llama3.1, Qwen2.5 HotpotQA, 2WikiMultiHopQA Two-stage Outcome-based RL

KunLunBaizeRAG
(Li et al., 2025a) 2025 Baize FlashRAG (38 datasets) DAPO; Search–Think Iterative Enhancement

RAG-R1
(Tan et al., 2025) 2025 Qwen2.5 HotpotQA, 2WikiMultiHopQA Multi-query Parallelism

ReSum
(Wu et al., 2025) 2025 Websailor SailorFog-QA Multi-Agent RL; Agentic RAG; Search Agent

SEM
(Sha et al., 2025) 2025 Qwen MuSiQue, MMLU Post-train

s3
(Jiang et al., 2025b) 2025 Qwen2.5

Claude-3-Haiku Natural Questions, HotpotQA Gain Beyond RAG Reward

ToolRL
(Qian et al., 2025) 2025 llama3.2, Qwen2.5 ToolACE, Hammer, xLAM Tool Selection; Application Tasks

InForage
(Qian and Liu, 2025) 2025 Qwen2.5 WebQA (self-crawled) Human-guided Dataset; Real-world Web Tasks

HRPO
(Yue et al., 2025) 2025 Qwen2.5 MMLU, GSM8K, MATH Hybrid Latent Reasoning

VerlTool
(Jiang et al., 2025a) 2025 Qwen2.5 - Diverse Tool Use

CoRAG
(Muhamed et al., 2025) 2025 llama3.1 2WikiMultiHopQA, MuSiQue

HotpotQA, bamboogol Dynamic Query Reformulation

DeepResearcher
(Zheng et al., 2025b) 2025 Qwen2.5 NQ, HotpotQA

TriviaQA, 2WikiMultiHopQA Cognitive Behaviors

SmartRAG
(Gao et al., 2025b) 2025 llama2

Flan-T5 Large

PopQA, AmbigNQ
HotpotQA, TriviaQA
OpenBookQA, MedQA-en
ARC-c

Joint Learning of RAG Tasks

ASearcher
(Gao et al., 2025a) 2025 Qwen2.5 HotpotQA, 2WikiMultiHopQA Asynchronous RL; Prompt-based Agent

Search-o1
(Li et al., 2025b) 2025

Qwen2.5, QwQ
llama3.3, GPT-4o
Deepseek-R1

GPQA, MATH500
NQ, HotpotQA Agentic Search-Enhanced Reasoning

AutoRefine
(Shi et al., 2025) 2025 Qwen2.5 FlashRAG (38 datasets) Knowledge Refinement

DualRAG
(Cheng et al., 2025) 2025 Qwen2.5 HotpotQA, MuSiQue

2WikiMultiHopQA Dual-process Reasoning–Retrieval

PAR-RAG
(Zhang et al., 2025b) 2025 GPT-4o MuSiQue, TriviaQA Retrieval-Augmented Multi-hop QA

Table 1: Methods for Reasoning-Search-Augmented Large Language Models


